skorch.classifier

NeuralNet subclasses for classification tasks.

class skorch.classifier.NeuralNetBinaryClassifier(module, *args, criterion=<class 'torch.nn.modules.loss.BCEWithLogitsLoss'>, train_split=<skorch.dataset.CVSplit object>, threshold=0.5, **kwargs)[source]

NeuralNet for binary classification tasks

Use this specifically if you have a binary classification task, with input data X and target y. y must be 1d.

In addition to the parameters listed below, there are parameters with specific prefixes that are handled separately. To illustrate this, here is an example:

>>> net = NeuralNet(
...    ...,
...    optimizer=torch.optimizer.SGD,
...    optimizer__momentum=0.95,
...)

This way, when optimizer is initialized, NeuralNet will take care of setting the momentum parameter to 0.95.

(Note that the double underscore notation in optimizer__momentum means that the parameter momentum should be set on the object optimizer. This is the same semantic as used by sklearn.)

Furthermore, this allows to change those parameters later:

net.set_params(optimizer__momentum=0.99)

This can be useful when you want to change certain parameters using a callback, when using the net in an sklearn grid search, etc.

By default an EpochTimer, BatchScoring (for both training and validation datasets), and PrintLog callbacks are installed for the user’s convenience.

Parameters:
module : torch module (class or instance)

A PyTorch Module. In general, the uninstantiated class should be passed, although instantiated modules will also work.

criterion : torch criterion (class, default=torch.nn.BCEWithLogitsLoss)

Binary cross entropy loss with logits. Note that the module should return the logit of probabilities with shape (batch_size, ).

threshold : float (default=0.5)

Probabilities above this threshold is classified as 1. threshold is used by predict and predict_proba for classification.

optimizer : torch optim (class, default=torch.optim.SGD)

The uninitialized optimizer (update rule) used to optimize the module

lr : float (default=0.01)

Learning rate passed to the optimizer. You may use lr instead of using optimizer__lr, which would result in the same outcome.

max_epochs : int (default=10)

The number of epochs to train for each fit call. Note that you may keyboard-interrupt training at any time.

batch_size : int (default=128)

Mini-batch size. Use this instead of setting iterator_train__batch_size and iterator_test__batch_size, which would result in the same outcome. If batch_size is -1, a single batch with all the data will be used during training and validation.

iterator_train : torch DataLoader

The default PyTorch DataLoader used for training data.

iterator_valid : torch DataLoader

The default PyTorch DataLoader used for validation and test data, i.e. during inference.

dataset : torch Dataset (default=skorch.dataset.Dataset)

The dataset is necessary for the incoming data to work with pytorch’s DataLoader. It has to implement the __len__ and __getitem__ methods. The provided dataset should be capable of dealing with a lot of data types out of the box, so only change this if your data is not supported. You should generally pass the uninitialized Dataset class and define additional arguments to X and y by prefixing them with dataset__. It is also possible to pass an initialzed Dataset, in which case no additional arguments may be passed.

train_split : None or callable (default=skorch.dataset.CVSplit(5))

If None, there is no train/validation split. Else, train_split should be a function or callable that is called with X and y data and should return the tuple dataset_train, dataset_valid. The validation data may be None.

callbacks : None or list of Callback instances (default=None)

More callbacks, in addition to those returned by get_default_callbacks. Each callback should inherit from Callback. If not None, a list of callbacks is expected where the callback names are inferred from the class name. Name conflicts are resolved by appending a count suffix starting with 1, e.g. EpochScoring_1. Alternatively, a tuple (name, callback) can be passed, where name should be unique. Callbacks may or may not be instantiated. The callback name can be used to set parameters on specific callbacks (e.g., for the callback with name 'print_log', use net.set_params(callbacks__print_log__keys_ignored=['epoch', 'train_loss'])).

warm_start : bool (default=False)

Whether each fit call should lead to a re-initialization of the module (cold start) or whether the module should be trained further (warm start).

verbose : int (default=1)

Control the verbosity level.

device : str, torch.device (default=’cpu’)

The compute device to be used. If set to ‘cuda’, data in torch tensors will be pushed to cuda tensors before being sent to the module. If set to None, then all compute devices will be left unmodified.

Attributes:
prefixes_ : list of str

Contains the prefixes to special parameters. E.g., since there is the 'module' prefix, it is possible to set parameters like so: NeuralNet(..., optimizer__momentum=0.95).

cuda_dependent_attributes_ : list of str

Contains a list of all attribute prefixes whose values depend on a CUDA device. If a NeuralNet trained with a CUDA-enabled device is unpickled on a machine without CUDA or with CUDA disabled, the listed attributes are mapped to CPU. Expand this list if you want to add other cuda-dependent attributes.

initialized_ : bool

Whether the NeuralNet was initialized.

module_ : torch module (instance)

The instantiated module.

criterion_ : torch criterion (instance)

The instantiated criterion.

callbacks_ : list of tuples

The complete (i.e. default and other), initialized callbacks, in a tuple with unique names.

Methods

check_data(X, y)
check_is_fitted([attributes]) Checks whether the net is initialized
evaluation_step(Xi[, training]) Perform a forward step to produce the output used for prediction and scoring.
fit(X, y, **fit_params) See NeuralNet.fit.
fit_loop(X[, y, epochs]) The proper fit loop.
forward(X[, training, device]) Gather and concatenate the output from forward call with input data.
forward_iter(X[, training, device]) Yield outputs of module forward calls on each batch of data.
get_dataset(X[, y]) Get a dataset that contains the input data and is passed to the iterator.
get_iterator(dataset[, training]) Get an iterator that allows to loop over the batches of the given data.
get_loss(y_pred, y_true[, X, training]) Return the loss for this batch.
get_params_for(prefix) Collect and return init parameters for an attribute.
get_params_for_optimizer(prefix, …) Collect and return init parameters for an optimizer.
get_split_datasets(X[, y]) Get internal train and validation datasets.
get_train_step_accumulator() Return the train step accumulator.
infer(x, **fit_params) Perform an inference step
initialize() Initializes all components of the NeuralNet and returns self.
initialize_callbacks() Initializes all callbacks and save the result in the callbacks_ attribute.
initialize_criterion() Initializes the criterion.
initialize_history() Initializes the history.
initialize_module() Initializes the module.
initialize_optimizer([triggered_directly]) Initialize the model optimizer.
load_params([f_params, f_optimizer, …]) Loads the the module’s parameters, history, and optimizer, not the whole object.
notify(method_name, **cb_kwargs) Call the callback method specified in method_name with parameters specified in cb_kwargs.
on_batch_begin(net[, Xi, yi, training])
on_epoch_begin(net[, dataset_train, …])
on_epoch_end(net[, dataset_train, dataset_valid])
on_train_begin(net[, X, y])
on_train_end(net[, X, y])
partial_fit(X[, y, classes]) Fit the module.
predict(X) Where applicable, return class labels for samples in X.
predict_proba(X) Where applicable, return probability estimates for samples.
run_single_epoch(dataset, training, prefix, …) Compute a single epoch of train or validation.
save_params([f_params, f_optimizer, f_history]) Saves the module’s parameters, history, and optimizer, not the whole object.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and labels.
set_params(**kwargs) Set the parameters of this class.
train_step(Xi, yi, **fit_params) Prepares a loss function callable and pass it to the optimizer, hence performing one optimization step.
train_step_single(Xi, yi, **fit_params) Compute y_pred, loss value, and update net’s gradients.
validation_step(Xi, yi, **fit_params) Perform a forward step using batched data and return the resulting loss.
get_default_callbacks  
get_params  
initialize_virtual_params  
on_batch_end  
on_grad_computed  
fit(X, y, **fit_params)[source]

See NeuralNet.fit.

In contrast to NeuralNet.fit, y is non-optional to avoid mistakenly forgetting about y. However, y can be set to None in case it is derived dynamically from X.

infer(x, **fit_params)[source]

Perform an inference step

The first output of the module must be a single array that has either shape (n,) or shape (n, 1). In the latter case, the output will be reshaped to become 1-dim.

predict(X)[source]

Where applicable, return class labels for samples in X.

If the module’s forward method returns multiple outputs as a tuple, it is assumed that the first output contains the relevant information and the other values are ignored. If all values are relevant, consider using forward() instead.

Parameters:
X : input data, compatible with skorch.dataset.Dataset

By default, you should be able to pass:

  • numpy arrays
  • torch tensors
  • pandas DataFrame or Series
  • scipy sparse CSR matrices
  • a dictionary of the former three
  • a list/tuple of the former three
  • a Dataset

If this doesn’t work with your data, you have to pass a Dataset that can deal with the data.

Returns:
y_pred : numpy ndarray
predict_proba(X)[source]

Where applicable, return probability estimates for samples.

If the module’s forward method returns multiple outputs as a tuple, it is assumed that the first output contains the relevant information and the other values are ignored. If all values are relevant, consider using forward() instead.

Parameters:
X : input data, compatible with skorch.dataset.Dataset

By default, you should be able to pass:

  • numpy arrays
  • torch tensors
  • pandas DataFrame or Series
  • scipy sparse CSR matrices
  • a dictionary of the former three
  • a list/tuple of the former three
  • a Dataset

If this doesn’t work with your data, you have to pass a Dataset that can deal with the data.

Returns:
y_proba : numpy ndarray
class skorch.classifier.NeuralNetClassifier(module, *args, criterion=<class 'torch.nn.modules.loss.NLLLoss'>, train_split=<skorch.dataset.CVSplit object>, classes=None, **kwargs)[source]

NeuralNet for classification tasks

Use this specifically if you have a standard classification task, with input data X and target y.

In addition to the parameters listed below, there are parameters with specific prefixes that are handled separately. To illustrate this, here is an example:

>>> net = NeuralNet(
...    ...,
...    optimizer=torch.optimizer.SGD,
...    optimizer__momentum=0.95,
...)

This way, when optimizer is initialized, NeuralNet will take care of setting the momentum parameter to 0.95.

(Note that the double underscore notation in optimizer__momentum means that the parameter momentum should be set on the object optimizer. This is the same semantic as used by sklearn.)

Furthermore, this allows to change those parameters later:

net.set_params(optimizer__momentum=0.99)

This can be useful when you want to change certain parameters using a callback, when using the net in an sklearn grid search, etc.

By default an EpochTimer, BatchScoring (for both training and validation datasets), and PrintLog callbacks are installed for the user’s convenience.

Parameters:
module : torch module (class or instance)

A PyTorch Module. In general, the uninstantiated class should be passed, although instantiated modules will also work.

criterion : torch criterion (class, default=torch.nn.NLLLoss)

Negative log likelihood loss. Note that the module should return probabilities, the log is applied during get_loss.

classes : None or list (default=None)

If None, the classes_ attribute will be inferred from the y data passed to fit. If a non-empty list is passed, that list will be returned as classes_. If the initial skorch behavior should be restored, i.e. raising an AttributeError, pass an empty list.

optimizer : torch optim (class, default=torch.optim.SGD)

The uninitialized optimizer (update rule) used to optimize the module

lr : float (default=0.01)

Learning rate passed to the optimizer. You may use lr instead of using optimizer__lr, which would result in the same outcome.

max_epochs : int (default=10)

The number of epochs to train for each fit call. Note that you may keyboard-interrupt training at any time.

batch_size : int (default=128)

Mini-batch size. Use this instead of setting iterator_train__batch_size and iterator_test__batch_size, which would result in the same outcome. If batch_size is -1, a single batch with all the data will be used during training and validation.

iterator_train : torch DataLoader

The default PyTorch DataLoader used for training data.

iterator_valid : torch DataLoader

The default PyTorch DataLoader used for validation and test data, i.e. during inference.

dataset : torch Dataset (default=skorch.dataset.Dataset)

The dataset is necessary for the incoming data to work with pytorch’s DataLoader. It has to implement the __len__ and __getitem__ methods. The provided dataset should be capable of dealing with a lot of data types out of the box, so only change this if your data is not supported. You should generally pass the uninitialized Dataset class and define additional arguments to X and y by prefixing them with dataset__. It is also possible to pass an initialzed Dataset, in which case no additional arguments may be passed.

train_split : None or callable (default=skorch.dataset.CVSplit(5))

If None, there is no train/validation split. Else, train_split should be a function or callable that is called with X and y data and should return the tuple dataset_train, dataset_valid. The validation data may be None.

callbacks : None or list of Callback instances (default=None)

More callbacks, in addition to those returned by get_default_callbacks. Each callback should inherit from Callback. If not None, a list of callbacks is expected where the callback names are inferred from the class name. Name conflicts are resolved by appending a count suffix starting with 1, e.g. EpochScoring_1. Alternatively, a tuple (name, callback) can be passed, where name should be unique. Callbacks may or may not be instantiated. The callback name can be used to set parameters on specific callbacks (e.g., for the callback with name 'print_log', use net.set_params(callbacks__print_log__keys_ignored=['epoch', 'train_loss'])).

warm_start : bool (default=False)

Whether each fit call should lead to a re-initialization of the module (cold start) or whether the module should be trained further (warm start).

verbose : int (default=1)

Control the verbosity level.

device : str, torch.device (default=’cpu’)

The compute device to be used. If set to ‘cuda’, data in torch tensors will be pushed to cuda tensors before being sent to the module. If set to None, then all compute devices will be left unmodified.

Attributes:
prefixes_ : list of str

Contains the prefixes to special parameters. E.g., since there is the 'module' prefix, it is possible to set parameters like so: NeuralNet(..., optimizer__momentum=0.95).

cuda_dependent_attributes_ : list of str

Contains a list of all attribute prefixes whose values depend on a CUDA device. If a NeuralNet trained with a CUDA-enabled device is unpickled on a machine without CUDA or with CUDA disabled, the listed attributes are mapped to CPU. Expand this list if you want to add other cuda-dependent attributes.

initialized_ : bool

Whether the NeuralNet was initialized.

module_ : torch module (instance)

The instantiated module.

criterion_ : torch criterion (instance)

The instantiated criterion.

callbacks_ : list of tuples

The complete (i.e. default and other), initialized callbacks, in a tuple with unique names.

classes_ : array, shape (n_classes, )

A list of class labels known to the classifier.

Methods

check_data(X, y)
check_is_fitted([attributes]) Checks whether the net is initialized
evaluation_step(Xi[, training]) Perform a forward step to produce the output used for prediction and scoring.
fit(X, y, **fit_params) See NeuralNet.fit.
fit_loop(X[, y, epochs]) The proper fit loop.
forward(X[, training, device]) Gather and concatenate the output from forward call with input data.
forward_iter(X[, training, device]) Yield outputs of module forward calls on each batch of data.
get_dataset(X[, y]) Get a dataset that contains the input data and is passed to the iterator.
get_iterator(dataset[, training]) Get an iterator that allows to loop over the batches of the given data.
get_loss(y_pred, y_true, *args, **kwargs) Return the loss for this batch.
get_params_for(prefix) Collect and return init parameters for an attribute.
get_params_for_optimizer(prefix, …) Collect and return init parameters for an optimizer.
get_split_datasets(X[, y]) Get internal train and validation datasets.
get_train_step_accumulator() Return the train step accumulator.
infer(x, **fit_params) Perform a single inference step on a batch of data.
initialize() Initializes all components of the NeuralNet and returns self.
initialize_callbacks() Initializes all callbacks and save the result in the callbacks_ attribute.
initialize_criterion() Initializes the criterion.
initialize_history() Initializes the history.
initialize_module() Initializes the module.
initialize_optimizer([triggered_directly]) Initialize the model optimizer.
load_params([f_params, f_optimizer, …]) Loads the the module’s parameters, history, and optimizer, not the whole object.
notify(method_name, **cb_kwargs) Call the callback method specified in method_name with parameters specified in cb_kwargs.
on_batch_begin(net[, Xi, yi, training])
on_epoch_begin(net[, dataset_train, …])
on_epoch_end(net[, dataset_train, dataset_valid])
on_train_begin(net[, X, y])
on_train_end(net[, X, y])
partial_fit(X[, y, classes]) Fit the module.
predict(X) Where applicable, return class labels for samples in X.
predict_proba(X) Where applicable, return probability estimates for samples.
run_single_epoch(dataset, training, prefix, …) Compute a single epoch of train or validation.
save_params([f_params, f_optimizer, f_history]) Saves the module’s parameters, history, and optimizer, not the whole object.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and labels.
set_params(**kwargs) Set the parameters of this class.
train_step(Xi, yi, **fit_params) Prepares a loss function callable and pass it to the optimizer, hence performing one optimization step.
train_step_single(Xi, yi, **fit_params) Compute y_pred, loss value, and update net’s gradients.
validation_step(Xi, yi, **fit_params) Perform a forward step using batched data and return the resulting loss.
get_default_callbacks  
get_params  
initialize_virtual_params  
on_batch_end  
on_grad_computed  
fit(X, y, **fit_params)[source]

See NeuralNet.fit.

In contrast to NeuralNet.fit, y is non-optional to avoid mistakenly forgetting about y. However, y can be set to None in case it is derived dynamically from X.

get_loss(y_pred, y_true, *args, **kwargs)[source]

Return the loss for this batch.

Parameters:
y_pred : torch tensor

Predicted target values

y_true : torch tensor

True target values.

X : input data, compatible with skorch.dataset.Dataset

By default, you should be able to pass:

  • numpy arrays
  • torch tensors
  • pandas DataFrame or Series
  • scipy sparse CSR matrices
  • a dictionary of the former three
  • a list/tuple of the former three
  • a Dataset

If this doesn’t work with your data, you have to pass a Dataset that can deal with the data.

training : bool (default=False)

Whether train mode should be used or not.

predict(X)[source]

Where applicable, return class labels for samples in X.

If the module’s forward method returns multiple outputs as a tuple, it is assumed that the first output contains the relevant information and the other values are ignored. If all values are relevant, consider using forward() instead.

Parameters:
X : input data, compatible with skorch.dataset.Dataset

By default, you should be able to pass:

  • numpy arrays
  • torch tensors
  • pandas DataFrame or Series
  • scipy sparse CSR matrices
  • a dictionary of the former three
  • a list/tuple of the former three
  • a Dataset

If this doesn’t work with your data, you have to pass a Dataset that can deal with the data.

Returns:
y_pred : numpy ndarray
predict_proba(X)[source]

Where applicable, return probability estimates for samples.

If the module’s forward method returns multiple outputs as a tuple, it is assumed that the first output contains the relevant information and the other values are ignored. If all values are relevant, consider using forward() instead.

Parameters:
X : input data, compatible with skorch.dataset.Dataset

By default, you should be able to pass:

  • numpy arrays
  • torch tensors
  • pandas DataFrame or Series
  • scipy sparse CSR matrices
  • a dictionary of the former three
  • a list/tuple of the former three
  • a Dataset

If this doesn’t work with your data, you have to pass a Dataset that can deal with the data.

Returns:
y_proba : numpy ndarray